
PALS: An Or-Parallel Implementation of Prolog
on Beowulf Architectures

K. Villaverde1, E. Pontelli1, H. Guo3, and G. Gupta2

1 Dept. Computer Science, New Mexico State University
{kvillave,epontell}@cs.nmsu.edu

2 Dept. Computer Science, Univ. Texas at Dallas
gupta@utdallas.edu

3 Dept. Computer Science, SUNY Stony Brook

Abstract. This paper describes the development of the PALS system,
an implementation of Prolog that efficiently exploits or-parallelism on
share-nothing platforms. PALS makes use of a novel technique, called
incremental stack-splitting. The technique builds on the stack-splitting
approach, which in turn is an evolution of the stack-copying method used
in a variety of parallel logic systems. This is the first distributed imple-
mentation based on the stack-splitting method ever realized. Experimen-
tal results obtained on a Beowulf system are presented and analyzed.

1 Introduction

Or-parallelism (OP) arises from the non-determinism implicit in the process
of reducing a given subgoal using different clauses of the program. The non-
deterministic structure of a logic programming execution is commonly depicted
in the form of a search tree (a.k.a. or-tree). Each internal node represents a
choice-point, i.e., an execution point where multiple clauses are available to
reduce the selected subgoal. Leaves of the tree represent either failure points
(i.e., resolvents where the selected subgoal does not have a matching clause) or
success points (i.e., solutions to the initial goal). A sequential computation boils
down to traversal of this search tree according to some predefined search strategy.
While a sequential execution attempts to use one clause at the time to reduce
each subgoal, eventually using backtracking to explore the use of alternative
clauses, OP allows the use of different threads of execution (computing agents)
to concurrently explore distinct alternatives emanating from a choice-point. If
an unexplored branch (i.e., an untried clause to resolve a selected subgoal) is
found, the agent picks it up and begins execution. This agent will stop either if
it fails (reaches a failing leaf), or if it finds a solution. In case of failure, or if the
solution found is not acceptable to the user, the agent will backtrack, i.e., move
back up in the tree, looking for other choice-points with untried alternatives to
explore. The agents may need to synchronize if they access the same node in the
tree. Intuitively, OP allows the concurrent search of alternative solutions to the
original goal. The importance of the research on efficient techniques for handling
OP arises from the generality of the problem—technology originally developed

P. Codognet (Ed.): ICLP 2001, LNCS 2237, pp. 27–42, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

28 K. Villaverde et al.

for parallel execution of Prolog has found application in areas such as constraint
programming (e.g., [17,13]) and non-monotonic reasoning (e.g., [14]).

Most research on OP execution of Prolog has focused on techniques aimed
at shared-memory multiprocessors (SMMs). In this paper we are concerned with
the development of execution models for exploitation of OP from Prolog pro-
grams on Distributed Memory Architectures (DMPs)—i.e., architectures that do
not provide any centralized memory resource. The techniques we propose are
immediately applicable to other systems based on the same underlying model,
e.g., constraint programming [17] and non-monotonic reasoning [14] systems.
Other proposals for OP on DMPs have also been recently proposed [8,18,3].

Experimental [1] and theoretical studies [15] have also demonstrated that
stack-copying, and in particular incremental stack-copying, is one of the most
effective implementation techniques for exploiting OP that one can devise. Stack-
copying allows sharing of work between parallel agents by copying the state of one
agent (which owns unexploited tasks) to another agent (which is currently idle).
The idea of incremental stack-copying is to only copy the difference between
the state of two agents. Incremental stack-copying has been used to implement
or-parallel Prolog efficiently in a variety of systems (e.g., MUSE [1], YAP [16]),
as well as to exploit parallelism from constraint systems [17] and non-monotonic
reasoning systems [14]. In order to further reduce the communication during
stack-copying and make its implementation efficient on share-nothing platforms,
a new technique, called stack-splitting, has recently been proposed [11]. In this
paper, we describe the first ever concrete implementation of stack-splitting on
a DMP platform—specifically a Pentium-based Beowulf—along with a novel
scheme to combine incremental copying with stack-splitting on DMPs. The incre-
mental stack-splitting scheme is based on a procedure which labels choice-points
and then compares the labels to determine the fragments of memory areas that
need to be exchanged between agents. We also describe a scheduling scheme
which is suitable to be used with this novel incremental stack-splitting scheme.
Both the incremental stack-splitting and the scheduling schemes described have
been implemented in the PALS system, a message-passing OP implementation
of Prolog. In this paper we present performance results obtained from this im-
plementation. To our knowledge, PALS is the first OP implementation of Prolog
on a Beowulf architecture (built from off-the-shelf components).

2 Stack-Splitting

Relatively few efforts [18,9,3,8,7,6] have been devoted to implementing logic
programming systems on DMPs. Some of the older proposals (e.g., [7,6]) re-
lied on variations of stack-copying, while the most recent proposals (e.g., [8,18])
make use of alternative schemes. Out of these efforts only a small number have
been implemented as working prototypes, and even fewer have produced accept-
able speed-ups. Existing techniques developed for SMMs are mostly inadequate
for the needs of DMPs. Most implementation methods require sharing of data

PALS: An Or-Parallel Implementation of Prolog on Beowulf Architectures 29

and/or control stacks to work correctly. Even if the need to share data stacks is
eliminated—as in stack-copying—the need to share the control stack still exists.

2.1 The Need for a Different Stack-Copying Model

Traditional stack-copying relies on idle agents copying data structures from busy
agents in order to obtain new tasks. In traditional stack-copying, as implemented
in MUSE, backtracking on a choice-point which has been shared between two
or more agents, requires acquiring exclusive access to the corresponding shared
frame. Shared frames are associated to each copied choice-point and used to
maintain a shared representation of the alternatives available in such choice-
point. The use of shared frames with mutually exclusive access guarantees that
no two agents explore the same alternative. This solution works well on SMMs—
where mutual exclusion is implemented using locks. However, on a DMP this
process is a source of overhead, since the shared area becomes a bottleneck [4].

Nevertheless, stack-copying has been recognized as one of the best repre-
sentation methodologies to support OP in a DMP setting [9,3,7,6]. This is be-
cause, while the choice-points are shared (through the shared frames), at least
all the other data-structures, such as the environment, the trail, and the heap
are not. Other environment representation schemes proposed for OP require
more extensive sharing of data structures and seem less suitable to support ex-
ecution on DMPs (although some recent efforts for adapting the binding array
scheme to DMPs—through the use of distributed shared-memory—have been
studied [18,8]). To avoid the problem of sharing choice-points in distributed
implementations, many developers have reverted back to the scheduling on top-
most choice-point strategy [3,6,9]. This methodology transfers between agents
only the highest choice-point (i.e., closer to the root) in the computation or-tree
which contains unexplored alternatives. The reasoning is that untried alterna-
tives of a choice-point created higher up in the or-tree are more likely to gen-
erate large subtrees as well as minimize the amount of computation “shared”
by different agents. Furthermore, this is guaranteed to be the only choice-point
with unexplored alternatives shared between agents. However, if the granularity
of the branches in the top-most choice-points does not turn out to be large,
then another untried alternative has to be picked and a new copying operation
performed. In contrast, in scheduling on bottom-most choice-point more work
can be found via backtracking, since more choice-points are copied during the
same sharing operation. Scheduling on bottom-most choice-point is character-
ized by the fact that all the choice-points owned by one agent are copied during
a sharing operation. Additionally, scheduling on bottom-most is closer to the
depth-first search strategy used by sequential systems, and facilitates support of
Prolog semantics. Research done on comparing scheduling strategies indicates
that scheduling on bottom-most is superior to scheduling on top-most [5]. This
is especially true for stack-copying because: (i) the number of copying operations
is minimized; and, (ii) the alternatives in the choice-points copied are “cheap”
sources of additional work, available via backtracking. However, the shared na-
ture of choice-points is a major drawback for stack-copying on DMPs.

30 K. Villaverde et al.

2.2 Stack-Splitting Copying Model

In the stack-copying approach, the primary reason why a choice-point has to be
shared is because we want to serialize the selection of untried alternatives, so that
no two agents can pick the same alternative. The shared frame is locked while
the alternative is selected to achieve this effect. However, there are other simple
ways of ensuring the same property: perform a splitting of the choice-points, i.e.,
each agent is given all the alternatives of alternate choice-points (See Fig. 1). In
this case, the list of choice-points is split between the two agents. We call this
operation choice-point stack-splitting or simply stack-splitting.

copied split choicepoint

untried alternative

Pi processor

LEGEND:

choicepoint

Fig (i): Processor P1 is busy and P2 idle

a2

a1

b1

b2
c1

c2

d2
P1

P2

idle

d1

Fig (ii): P1’s Tree after Vertical Splitting

a1

b1

b2
c1

d2
P1

d1

Fig (iii): P2’s Tree after Vertical Splitting

a2

a1

b1

c2

P2

a

b

c

d

b

d

a

c

Fig. 1. Splitting of Choice-points

Stack-splitting will ensure that no two agents pick the same alternative. The
need for a shared frame, as a critical section to protect the alternatives from
multiple executions, has disappeared, as each stack copy has a different choice-
point. All the choice-points can be evenly split in this way during the copying
operation. The major advantage of stack-splitting is that scheduling on bottom-
most can still be used without incurring huge communication overheads. Es-
sentially, after splitting, the different or-parallel threads become independent of
each other, and hence communication is minimized during execution. This makes
the stack-splitting technique highly suitable for DMPs. Observe that alternative
splitting strategies may also be designed—e.g., dividing the alternatives within
each choice-point between the two agents [11].

The shared frames in the stack-copying technique are used to maintain global
information related to scheduling. The shared frames provide a global description
of the or-tree, and each shared frame records which agent is working in which
part of the tree. This last piece of information is needed to support scheduling in
stack-copying systems—work is taken from the agent that is “closer” in the or-
tree, thus reducing the amount of information to be copied. The shared frames
ensure accessibility of this information to all agents, providing a consistent view
of the computation. However, under stack-splitting the shared frames no longer
exist; scheduling and work-load information will have to be maintained in some
other way. They could be kept in a global shared area, as in the case of SMMs—
e.g., by building a representation of the or-tree—or distributed over multiple

PALS: An Or-Parallel Implementation of Prolog on Beowulf Architectures 31

agents and accessed by message passing in case of DMPs. Shared frames are
also employed in MUSE [1] to detect the Prolog order of choice-points, needed
to execute order-sensitive predicates (e.g., side-effects) in the correct order. As
in the case of scheduling, some information regarding global ordering of choice-
points needs to be maintained to execute order-sensitive predicates in the correct
order. In this paper however we do not handle side-effects and order sensitive
predicates. Thus, stack-splitting does not completely remove the need of a shared
description of the or-tree. On the other hand, the use of stack-splitting mitigates
the impact of accessing shared resources—e.g., stack-splitting allows scheduling
on bottom-most which reduces the number of calls to the scheduler.

Stack-splitting has the potential to improve locality of computation, reduce
communication between agents, and improve cache behavior. Indeed, the SMM
implementation of stack-splitting described in [11] achieves on many benchmarks
better speedups than traditional stack copying. The ability to reuse the same
technology on both SMMs and DMPs is also a key to development of Prolog
systems on Clusters of SMMs, i.e., distributed systems with SMMs as nodes.

2.3 Incremental Stack-Copying

Traditional stack-copying requires agents which share work to transfer a com-
plete copy of the data structures representing the status of the computation.
In the case of a Prolog computation, this may include transferring most of the
choice-points along with copies of the other data areas (trail, heap, environ-
ments). Since Prolog computations can make use of large amounts of memory,
this copying operation can become quite expensive. Existing stack-copying sys-
tems (e.g., MUSE) have introduced a variation of stack-copying, called Incre-
mental Stack-Copying [1] which allows to considerably reduce the amount of
data transferred during a sharing operation. The idea is to transfer only the
difference between the data areas of the two agents. Incremental stack-copying,
in a shared-memory context, is relatively simple to realize—the shared frames
can be used to identify which choice-points are in common and which are not [1].

In the rest of the paper we describe a complete implementation of stack-
splitting on a DMP platform, analyzing in detail how the various problems men-
tioned earlier have been tackled. In addition to the basic stack-splitting scheme,
we analyze how stack-splitting can be extended to incorporate incremental copy-
ing, an optimization which has been deemed essential to achieve speed-ups in
various classes of benchmarks. The solution we describe has been developed in a
concrete implementation, realized by modifying the engine of a commercial Pro-
log system (ALS Prolog) and making use of MPI as communication platform.
The ALS Prolog engine is based on the Warren Abstract Machine (WAM).

3 Incremental Stack-Splitting

During stack-splitting, all WAM data areas, except for the code area, are copied
from the agent giving work to the idle one. Next, the parallel choice-points

32 K. Villaverde et al.

are split between the two agents. Blindly copying all the stacks every time an
agent shares work with another idle agent can be wasteful, since frequently
the two agents already have parts of the stacks in common due to previous
copying. We can take advantage of this fact to reduce the amount of copying
by performing incremental copying. In order to figure out the incremental part
that only needs to be copied during incremental stack-splitting, parallel choice-
points will be labeled. The goal of the labeling process is to uniquely identify
the original “source” of each choice-point (i.e., which agent created it), to allow
unambiguous detection of copies of common choice-points.

PA cnt=2 PB cnt=1

a

a1

a2

b1

b2

b

PA

PB

idle

A:1

A:1

Fig. 2. A Labels its Choice-points

PA cnt=2 PB cnt=1

a1

b1

b

a

A:1

A:1

PA

A:1 schedule

A:1

b

b1

trust fail

PB

b2

a2

a1

a
schedule

αα

trust fail

Fig. 3. A Gave Work to B

To perform labeling, each agent maintains a counter. The counter is increased
by 1 every time the labeling procedure is performed. When a parallel choice-point
is copied for the first time, a label for it is created. The label is composed of three
parts: (1) agent rank, (2) counter, and (3) choice-point address. The agent rank
is the rank (i.e., id) of the agent which created the choice-point. The counter is
the current value of the labeling counter for the agent generating the labels. The
choice-point address is the address of the choice-point which is being labeled.
The labels for the parallel choice-points are recorded in a separate label stack, in
the order they are created. Also, when a parallel choice-point is removed from the
stack, its corresponding label is also removed from the label stack (this is actually
integrated with the variable untrailing mechanism). Initially, the label stack in
each agent is set to empty. Intuitively, the label stack keeps a record of changes
done to the stacks since the last stack-splitting operation. Let us illustrate the
stack-splitting accompanied by labeling with an example. Suppose process A
has just created two parallel choice-points and process B is idle. Process A first
creates labels for its two parallel choice-points. These labels have their rank and
counter parts as A:1. Process A pushes these labels into its label stack (Fig. 2).

Process B gets all the parallel choice-points of process A along with process A
label stack. Then, stack-splitting takes place: process A will keep the alternative
b2 but not a2, and process B will keep the alternative a2 but not b2. We have
designed a new WAM scheduling instruction which is placed in the next alter-
native field of the choice-point above which there is no more parallel work. This

PALS: An Or-Parallel Implementation of Prolog on Beowulf Architectures 33

scheduling instruction implements the scheduling scheme described in Section
4. To avoid taking the original alternative of a choice-point, we change its next
alternative field to WAM instruction trust fail. See Fig. 3. Afterwards, process
B backtracks, removes choice-point b along with its corresponding label in the
label stack, and then takes alternative a2 of choice-point a.

3.1 Incremental Stack-Splitting: The Procedure

Assume process W is giving work to process I. Process W will label all its parallel
choice-points which have not been labeled before and will push them into its label
stack. If process I label stack is empty, then non-incremental stack-copying will
need to be performed followed by stack-splitting. Process W sends its complete
choice-point stack and its complete label stack to process I. Then stack-splitting
is performed on all the parallel choice-points of process W. However, if process
I label stack is not empty then process I sends its label stack to process W.
Process W compares its label stack against the label stack from I. The objective
is to find the last choice-point ch with a common label. In this way, processes
W and I are guaranteed to have the same computation above the choice-point
ch, while their computations will be different below such choice-point.

PA cnt=9 PC cnt=7

g1

h1

h

g

B:7

C:5

PA

C:5

h

h1

h2

g1

g

α

B:7

schedule

α

A:8

A:8

i

j

i1

j1
i2

j2

trust fail

ch
ch

trust fail

schedule

PC

Fig. 4. Labels Comparison

PA cnt=9 PC cnt=7

g1

h1

h

g

B:7

C:5

PA

C:5

h

h1

h2

g1

g

α

B:7 schedule

α

A:8

A:8

i

j

i1

j1

j2

trust fail

trust fail

i
A:8

i1

A:8

j

j1

trust fail

i2trust fail

schedule

PC

Fig. 5. Proc. A Gave Work to Proc. C

If the choice-point ch does not exist, then non-incremental stack-copying will
need to be performed followed by stack-splitting, as described before. However,
if choice-point ch does exist, then process I backtracks to choice-point ch, and
performs incremental-copying. Process W sends its choice-point stack starting
from choice-point ch to the top of its choice-point stack. Process W also sends
its label stack starting from the label corresponding to ch to the top of its label
stack. Stack-splitting is then performed on all the parallel choice-points of W.

We illustrate the above procedure by the following example. Suppose process
A has three parallel choice-points and process C requests work from A. Process A
first labels its last two parallel choice-points which have not been labeled before

34 K. Villaverde et al.

and then increments its counter. Afterwards, process C sends its label stack to
process A. Process A compares its label stack against the label stack of process
C and finds the last choice-point ch with a common label. Above choice-point
ch, the Prolog trees of processes A and C are equal. See Fig. 4. Now, process
C backtracks to choice-point ch. Incremental stack-copying can then take place.
Process A sends its choice-point stack starting from choice-point ch to the top
of its choice-point stack, and stack-splitting is performed (Fig. 5).

3.2 Incremental Stack-Splitting: Challenges

Sequential Choice-points: The first issue has to do with sequential choice-
points that are located among the parallel choice-points shared by two agents. If
the alternatives of these choice-points are kept in both processes, we may have
repeated or wrong computations. Hence, the alternatives of these choice-points
should only be kept in one process (e.g., the one giving work). If the alternatives
are kept in the process giving work, then the process that is receiving work
should change the next alternative field of these choice-points to the instruction
trust fail to avoid taking the original alternatives of these choice-points.
Installation Process: The second issue has to do with the bindings of con-
ditional variables (i.e., variables that may be bound differently in different or-
parallel branches) which may not be copied during the incremental splitting
process. This can be fixed by having the process giving work create a stack of
all these conditional variables along with their bindings. This stack will then be
sent to the process receiving work so that it can update the bindings.
Garbage Collection:When garbage collection takes place, relocation of choice-
points may also occur. Hence, the labels in our label stack may no longer label
the correct parallel choice-points. Therefore, we need to modify our labeling
procedure so that when garbage collection on an agent takes place, the label
stack of this agent is invalidated. The next time this process gives work, non-
incremental stack-copying will have to take place. This solution is analogous to
the one adopted in the original implementation of the MUSE system [1].

PA cnt=9 PC cnt=7

g1

h1

h

g

B:7

C:5

PA

C:5

h

h1

h2

g1

g

α

B:7

schedule

α

A:8

A:8

i

j

i1

j1
i2

j2

trust fail

ch
ch

schedule

first cp

g2

PC

Fig. 6. Copy Nextclause from first cp to ch

PA cnt=9 PC cnt=7

g1

h1

h

g

B:7

C:5

PA

C:5

h

h1

h2

g1

g

α

B:7

schedule

α

A:8

A:8

i

j

i1

j1

j2

trust fail

trust fail

i
A:8

i1

A:8

j

j1

trust fail

i2trust fail

schedule

g2

PC

Fig. 7. C Received Next-Clause Fields

PALS: An Or-Parallel Implementation of Prolog on Beowulf Architectures 35

Next Clause Fields: The fourth issue arises when the next clause fields of
the parallel choice-points between the first parallel choice-point first cp and the
last choice-point ch with a common label in the agent giving work are not the
same compared to the ones in the agent receiving work. This situation occurs
after several copying and splitting operations. In this case, we cannot just copy
the part of the choice-point stack between choice-point ch and the top of the
stack and then perform the splitting. This is because the splitting will not be
performed correctly. For example, suppose that in our previous example when
process C requests work from process A, we have this situation (Fig. 6). We can
see that choice-point g should be given to process C. But process C does not
have the right next clause field for this choice-point. The problem can be solved
by having the process giving work send all the next clause fields between its first
choice-point first cp and choice-point ch to the process receiving work. Then the
splitting of all parallel choice-points can take place correctly. See Fig. 7.

4 Scheduling

The main objective of a scheduling strategy is to balance the amount of parallel
work done by different agents. Additionally, work distribution among agents
should be done with minimal communication overhead. These two goals are
somewhat at odds with each other, since achieving perfect balance may result in
a very complex scheduling strategy with considerable communication overhead,
while a simple scheduling strategy which re-distributes work less often will incur
low communication overhead but poor balancing of work. Therefore, it is obvious
that there is an intrinsic contradiction between distributing parallel work as even
as possible and minimizing the distribution overhead. Thus our main goal is to
find a trade-off point that results in a reasonable scheduling strategy.

We adopt a simple distributed algorithm to implement a scheduling strategy
in PALS. A data structure—the load vector—is introduced to indicate the work
loads of different agents. The work load of an agent is approximated by the
number of parallel choice-points present in its local computation tree. Each agent
keeps a work load vector V in its local memory, and the value of V[i] represents
the work load of the agent with rank i. Based on the work load vector, an idle
agent can request parallel work from other agent with the greatest work load,
so that parallel work can be fairly distributed. The load vector is updated at
runtime. When stack-splitting is performed, a Load Info message with updated
load information will be broadcasted to all the agents so that each agent has
the latest information of work load distribution. Additionally, load information
is attached with each incoming message. For example: when a Request Work
message is received from agent P1, the value of P1’s work load, 0, can be inferred.

Based on its work load each agent can be in one of two states: scheduling
state or running state. An agent that is running, occasionally checks whether
there are incoming messages. Two possible types of messages are checked by the
running agent: one is Request Work message sent by an idle agent, and the other
is Send Load Info message, which is sent when stack-splitting occurs. The idle
agent in scheduling state is also called a scheduling agent.

36 K. Villaverde et al.

The distributed scheduling algorithm mainly consists of two parts: one is
for the scheduling agent, and the other is for the running agent. An idle agent
wants to get work as soon as possible from another agent, preferably the one
that has the largest amount of work. The scheduling agent searches through
its local load vector for the agent with the greatest work load, and then sends
a Request Work message to that agent asking for work. If all the other agents
have no work, then the execution of the current query is finished and the agent
halts. When a running agent receives a Request Work message, stack-splitting
will be performed if the running agent’s work load is greater than the splitting
threshold, otherwise, a Reply Without Work message with a positive work load
value will be sent as a reply. If a scheduling agent receives a Request Work
message, a Reply Without Work message with work load 0 will be sent as a
reply. The running agent’s algorithm can be briefly described as follows: each
incoming message can be either a Send LoadInfo message—i.e., a notification
of a change in load for some processors—or a Request Work message—i.e., a
request for sharing, which is accepted if the local load is above a given threshold.
At fixed time intervals (which can be selected at initialization of the system) the
agent examines the content of its message queue for eventual pending messages.
Send LoadInfo messages are quickly processed to update the local view of the
overall load in the system. Messages of the type Request Work are handled as
described above. Observe that the concrete implementation actually checks for
the presence of the two types of messages with different frequency (i.e., request
for work messages are considered less frequently than requests for load update).

5 Implementation and Performance

Stack-Splitting: The stack-splitting procedure has been implemented by mod-
ifying the commercial ALS Prolog system, using the MPI library for message
passing. The only major data structures added to the ALS system are: the la-
bel stack, the load vector, and buffers in order transfer information. The whole
system runs on a truly distributed machine (a network of 32 Pentium II nodes
connected by Myrinet-SAN Switches). All communication—during scheduling,
copying, splitting, etc.— is done using explicit message passing via MPI.

The benchmarks used to test our system are standard benchmarks drawn
from the pool of programs frequently used to evaluate OP systems (e.g., Queens,
Knight, Solitaire). The benchmarks selected are simple but provide sufficiently
different program structures to validate the parallel engine. The timing results
in seconds from our incremental stack-splitting system are presented in Table 1.
The modifications made to the ALS WAM are very localized and reduced to the
minimum. This has allowed us to keep a clean design—that can be easily ported
to other WAM-based implementations—and to contain the parallel overhead—
our engine on a single processor is on average 5% slower than ALS WAM. The
corresponding speed-ups are presented in Fig. 8 (with label incremental).

Note that for benchmarks with substantial running time the speed-ups are
quite good, while for programs with smaller running time the speed-ups deteri-

PALS: An Or-Parallel Implementation of Prolog on Beowulf Architectures 37

Table 1. Timings for Incremental Stack-Splitting (Time in sec.)

Benchmark # Processors
1 2 4 8 16 32

Knight 159.950 81.615 40.929 20.754 10.939 8.248
Send More 61.817 32.953 17.317 8.931 4.923 3.916
8 Puzzle 27.810 15.387 8.442 10.522 3.128 5.940
Solitaire 5.909 3.538 1.811 1.003 0.628 0.535
10 Queens 4.572 2.418 1.380 0.821 1.043 0.905
Hamilton 3.175 1.807 0.952 0.610 0.458 0.486

Map Coloring 1.113 0.702 0.430 0.319 0.318 0.348
8 Queens 0.185 0.162 0.166 0.208 0.169 0.180

orate. This is consistent with our belief that DMP implementations should be
used for parallelizing programs with coarse-grained parallelism. For programs
with small running times, there is not enough work to offset the communication
costs on DMPs. Nevertheless, our system is reasonably efficient, given that even
for small benchmarks it can produce speed-ups. It is also interesting to observe
that in no cases we have observed slow-downs due to parallel execution—thanks
to simple granularity control mechanisms embedded in the scheduler. For some
benchmarks the speedup graphs are somewhat irregular – specially the 8 Puzzle.
We believe that the reason behind this hides in the scheduling strategy used.

One of the objectives of the experiments performed is to validate the effec-
tiveness of incremental stack-splitting for efficient exploitation of parallelism on
DMPs. In particular, there are two aspects that we were interested in exploring:
(i) verifying the effectiveness of stack-splitting versus a more “direct” imple-
mentation of stack-copying (i.e., keeping single copies of choice-points around
the system); (ii) verifying the impact of incremental splitting. Validity of stack-
splitting vs. stack-copying can be inferred from the experiments described in the
next subsection: a direct implementation of stack-copying would produce the
same amount of communication traffic as some of the variations of scheduling
tested, and thus incur the same kind of problems described next. In order to
evaluate the impact of incrementality, we have measured the performance of the
system on the selected benchmarks without the use of incremental splitting—
i.e., each time a sharing operation takes place, a complete copy of the data areas
is performed. The results obtained from this experiment are in Fig. 8: the figure
compares the speed-ups observed with and without incremental copying. We can
observe that incremental stack-splitting obtains higher speed-ups than the non-
incremental stack-copying. The difference is more significant in benchmarks with
a large number of choice-points, where incrementality is applied more frequently.
Scheduling: One of the major reasons to adopt stack-splitting is the ability
to perform scheduling on bottom-most choice-point. Other DMP implementa-
tions of OP have resorted to scheduling on the top-most choice-point, where only

38 K. Villaverde et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

Hamilton

Incremental

Non−incremental

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 10 1112 13 14 1516 17 18 1920 21 22 2324 25 26 2728 29 30 3132

0

2

4

6

8

10

12

Solitaire

Incremental

Non−incremental

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 1011 121314 151617 1819 202122 232425 2627 282930 3132

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

Knight

Incremental

Non−incremental

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 1011 121314 151617 1819 202122 232425 2627 282930 3132

0

2.5

5

7.5

10

12.5

15

17.5

20

Send More

Incremental

Non−incremental

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 1011 12 1314 15 16 1718 19 2021 22 2324 25 26 2728 29 3031 32

0

1

2

3

4

5

6

7

8

9

10

8 Puzzle

Incremental

Non−incremental

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 10 1112 13 1415 1617 1819 20 2122 2324 25 2627 2829 3031 32

0

0.5

1

1.5

2

2.5

3

3.5

4

Map Coloring

Incremental

Non−incremental

Number of Processors

S
pe

ed
−
up

Fig. 8. Incremental Stack-Splitting vs. Non-Incremental Stack-Splitting

the oldest choice-point with unexplored alternatives is exchanged between pro-
cessors. Top-most scheduling will share only one choice-point at the time, thus
relieving the engine from the need of controlling access to shared choice-points.

To validate the effectiveness of our claim, we have developed a top-most
scheduler for our system and compared its performance with that of the incre-
mental stack-splitting with bottom-most scheduling. Fig. 9 compares the speed-
ups observed using the two different schedulers. In the figure we have reported
the behavior only of those benchmarks where significant differences in perfor-
mance have been recorded. In all other benchmarks, top-most and bottom-most
scheduling provide similar results, as a small number of choice-points are cre-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

Hamilton

Incremental

Top Most

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.5

1

1.5

2

2.5

3

3.5

4

Map Coloring

Incremental

Top Most

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2

4

6

8

10

12

Solitaire

Incremental

Top Most

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

Knight

Incremental

Top Most

Number of Processors

S
pe

ed
−
up

Fig. 9. Incremental Stack-Splitting vs. Top Most Scheduling

PALS: An Or-Parallel Implementation of Prolog on Beowulf Architectures 39

ated and only one at a time is shared between processors. As we can observe
from Fig. 9, bottom-most scheduling provides a sustained speed-up considerably
higher than top-most scheduling. This is due to the reduced number of calls to
the scheduler performed during the execution—processors spend a higher frac-
tion of their time doing useful work compared to scheduling on top-most.

Another aspect of our implementation that we are interested in validating
is the performance of the distributed scheduler. As mentioned in Sect. 4, our
scheduler is based on keeping in each processor an “approximated” view of the
load in each other processor. The risk that this method may encounter is that
a processor may have out-of-date information concerning the load in other pro-
cessors, and as a consequence it may try to request work from idle processors or
ignore processors that may have unexplored alternatives. Fig. 10 provides some
information concerning the number of attempts that a processor needs to per-
form before receiving work. The figure on the left measures the average number
of requests that a processor has to send; as we can see, the number is very small
(1 or 2 requests are typically sufficient) and such number is generally better
if we adopt bottom-most scheduling. The figure on the right shows the maxi-
mum number of requests observed; these numbers tend to grow towards the end
of the computation (when less work is available)—nevertheless, typically only
one or two processors achieve these maximum values, while the majority of the
processors remain close to the average number of attempts.

To further validate our scheduling approach, we have compared it with an
alternative scheduling scheme developed in PALS. This alternative scheme is
an implementation of a centralized scheduling algorithm, designed following the
guidelines of the scheduler used in Opera [7]. In the centralized approach, only
one processor, called central, is in charge of keeping track of the load information.
Idle processors send their requests for work directly to the central processor. In
turn, the central processor is in charge of implementing a matchmaking algo-
rithm between idle and busy processors. When stack-splitting occurs, only the
central processor is informed about the load information update. Fig. 11 com-
pares the speed-ups achieved using centralized scheduling with the speed-ups
observed using the distributed scheduling approach.1 As evident from the figure,
the speed-ups observed in centralized scheduling are almost negligible—this is
due to the inability of the scheduling method to promptly respond to the re-
quests for new work. Also, the use of a reasonably fast network (Myrinet) leads
to the creation of a severe bottleneck at the level of the centralized scheduler.

Knight Send More 8 Puzzle Solitaire 10 Queens Hamilton Map coloring 8 Queens

0

2.5

5

7.5

10

12.5

15

17.5

20

Number of Requests Before Getting Work

Incremental

Top Most

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

Knight Send More 8 Puzzle Solitaire 10 Queens Hamilton Map coloring 8 Queens

0

20

40

60

80

100

120

Number of Requests Before Getting Work

Incremental

Top Most

M
ax

im
um

 N
um

be
r

of
 R

eq
ue

st
s

Fig. 10. Average and Maximum Number of Tries to Acquire Work

1 We had to limit the experiments to a smaller number of CPUs due to unavailability
of half of the machine at that time.

40 K. Villaverde et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

Hamilton

Incremental

Centralized

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.5

1

1.5

2

2.5

3

3.5

4

Map Coloring

Incremental

Centralized

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2

4

6

8

10

12

Solitaire

Incremental

Centralized

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

9

10

8 Puzzle

Incremental

Centralized

Number of Processors

S
pe

ed
−
up

Fig. 11. Incremental Stack-Splitting vs. Centralized Scheduling

The results presented in [5] suggest that random selection of work may also
provide a simple and effective alternative when searching for work. We have
experimented with this idea, by modifying the scheduler to select any busy pro-
cessor for scheduling. The idea is to avoid bottleneck situations where multiple
idle processors are concentrating their requests for work towards the same busy
processor. We have named this new version of the scheduler Random Scheduler.
In this version, an idle processor searches its load vector for the next processor
with load greater than a given small threshold. Fig. 12 compares the speed-ups
observed in the Random scheduler with those from the standard bottom-most
scheduling with selection of processor with highest load. The results indicate that
the Random scheduler is less effective. This suggests that selecting work from
the processor with highest load is not a severe bottleneck and sending requests
to lightly loaded processors may increase the number of calls to the scheduler.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.5

1

1.5

2

2.5

3

3.5

4

Map Coloring

Incremental

Random

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.25

0.5

0.75

1

1.25

1.5

8 Queens

Incremental

Random

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

Hamilton

Incremental

Random

Number of Processors

S
pe

ed
−
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2

4

6

8

10

12

Solitaire

Incremental

Random

Number of Processors

S
pe

ed
−
up

Fig. 12. Incremental Stack-Splitting vs. Random Scheduling

PALS: An Or-Parallel Implementation of Prolog on Beowulf Architectures 41

6 Related Work and Conclusions

In this paper we proposed a novel scheme to implement incremental stack-
splitting for OP on DMPs. The novel method allows to take advantage of
the higher locality and independence of computation threads allowed by stack-
splitting, without losing the advantages of incremental copying. The incremental
stack-splitting scheme presented is based on a procedure which labels parallel
choice-points and then compares the labels to determine the incremental WAM
areas to be copied. Furthermore, we described a scheduling strategy for incre-
mental stack-splitting. The incremental stack-splitting scheme and the schedul-
ing strategy have been implemented in the ALS Prolog system, and performance
results from this implementation were reported. To our knowledge, PALS is the
first ever or-parallel implementation of Prolog on Beowulf systems.

A relatively small number of proposals can be found in the literature dealing
with execution of Prolog on DMPs. Some of the existing environment representa-
tion models proposed (e.g., Conery’s Closed Environments) have been designed
with distributed memory in mind, but they have never been concretized in ac-
tual implementations. Most of the older systems implemented on DMPs [7,6]
are based on stack copying and have been designed with respect to a specialized
architecture (Transputers). Their schedulers are tailored for this class of archi-
tectures and they all resort to top scheduling to reduce communication costs.
PDP [3] makes use of a recomputation approach to deal with OP, and has also
been developed on Transputers. MUSE version on switch based multiprocessors
[2] (e.g., Butterfly) gives good speedups for very coarse grain applications but
uses distributed shared-memory techniques. Only in recent years a renovated
effort towards developing models for generic DMP architectures have emerged.
These include DAOS [8] and Dorpp [18] based on variations of the binding arrays
method and relying on distributed shared-memory technology; DAOS has not
reported any implementation result, while Dorpp has been executed on simu-
lators (with fairly good results). In contrast to DAOS and Dorpp, we opted to
continue using stack copying with a fully distributed scheduler. For comparison
of stack-splitting with other existing approaches see [11].
Acknowledgments: We are grateful for the help received from K. Bowen,
C. Houpt, and V. Santos Costa. This work has been partially supported by
NSF grants CCR-9875279, CCR-9900320, CDA-9729848, EIA-9810732, CCR-
9820852, and HRD-9906130, and by a fellowship from the Dept. of Education.

References

1. K.A.M. Ali and R. Karlsson. The Muse Or-parallel Prolog Model and its Perfor-
mance. In N. American Conf. on Logic Prog., pages 757–776. MIT Press, 1990.

2. K.A.M. Ali, R. Karlsson, and S. Mudambi Performance of Muse on Switch-Based
Multiprocessors Machines. New Generation Computing, 11(1):81-103, 1992.

3. L. Araujo and J. Ruz. A Parallel Prolog System for Distributed Memory. J. of
Logic Programming, 33(1):49–79, 1998.

4. H. Babu. Porting MUSE on ipsc860. Master’s thesis, NMSU, 1996.

42 K. Villaverde et al.

5. A.J. Beaumont and D. H. D. Warren. Scheduling Speculative Work in Or-Parallel
Prolog Systems. In ICLP, pages 135–149, 1993. MIT Press.

6. V. Benjumea and J.M. Troya. An OR Parallel Prolog Model for Distributed Mem-
ory Systems. In PLILP, pages 291–301, 1993. Springer Verlag.

7. J. Briat et al. OPERA: Or-Parallel Prolog System on Supernode. In Implementa-
tions of Distributed Prolog, pages 45–64. J. Wiley & Sons, New York, 1992.

8. L.F. Castro et al. DAOS: Scalable And-Or Parallelism. In Euro-Par, pages 899–
908, 1999. Springer Verlag.

9. W-K. Foong. Combining and- and or-parallelism in Logic Programs: a distributed
approach. PhD thesis, University of Melbourne, 1995.

10. G. Gupta and E. Pontelli. Optimization Schemas for Parallel Implementation of
Nondeterministic Languages and Systems. In IPPS, 1997. IEEE Computer Society.

11. G. Gupta and E. Pontelli. Stack-splitting: A Simple Technique for Implementing
Or-parallelism on Distributed Machines. In ICLP. MIT Press, pages 290–304, 1999.

12. G. Gupta, E. Pontelli, M. Carlsson, M. Hermenegildo, and K.M. Ali. Parallel
Execution of Prolog Programs: a Survey. ACM TOPLAS, 2001. (to appear).

13. L. Perron. Search Procedures and Parallelism in Constraint Programming. In
PPDP, pages 346–360, 1999. Springer Verlag.

14. E. Pontelli and O. El-Kathib. Construction and Optimization of a Parallel Engine
for Answer Set Programming. In PADL, pages 288–303, 2001. Springer Verlag.

15. D. Ranjan, E. Pontelli, and G. Gupta. On the Complexity of Or-Parallelism. NGC,
17(3):285–308, 1999.

16. R. Rocha, F. Silva, and V. Santos Costa. YapOr: an Or-Parallel Prolog System
based on Environment Copying. In EPPIA, pages 178–193, 1999, Springer Verlag.

17. C. Schulte. Parallel Search Made Simple. In TRICS, number TRA9/00, pages
41–57, University of Singapore, 2000.

18. F. Silva and P. Watson. Or-Parallel Prolog on a Distributed Memory Architecture.
Journal of Logic Programming, 43(2):173–186, 2000.

	1 Introduction
	2 Stack-Splitting
	2.1 The Need for a Different Stack-Copying Model
	2.2 Stack-Splitting Copying Model
	2.3 Incremental Stack-Copying

	3 Incremental Stack-Splitting
	3.1 Incremental Stack-Splitting: The Procedure
	3.2 Incremental Stack-Splitting: Challenges

	4 Scheduling
	5 Implementation and Performance
	6 Related Work and Conclusions
	References

